Увеличиваем ток (ампераж) блока питания. Как сделать регулируемый блок питания из компьютерного Улучшаем блок питания

Со скуки решил сделать старый «фокус» из вышедшего на покой компьютерного блока питания ATX 450W, сделать автономный блок питания (БП), например для радиостанции. Блок питания запускался, 12 В. выдавал, значит с ним все не так страшно. Осталось убрать лишнее, добавить необходимое и продлить ему жизнь.

Хотел по подробней заснять весь процесс, но был один, делать и фоткать не получалось.

Характеристики БП вполне приличные, что бы за питать достаточного мощного 12 вольтового потребителя, например радиостанцию.

Вскрываем блок питания и смотрим какие у него проблемы и что там у нас лишнее.

После очистки выяснилось, что высохла емкость на выход 5В., это напряжение нам вообще не нужно, его проще удалить.

Убираем заодно и все провода, со всем разъемами, так много их теперь не нужно.

Черные провода это у нас МИНУС, Желтые + 12 В.. Ну а остальное не важно, пожалуй кроме Зеленого провода, он нам пригодится. Выпаиваем всё лишние, тут кстати очень пригодится паяльник на 150 Ватт. 🙂

Зеленый провод запускает БП из режима «Standby», его в последствии надо замкнуть на минус, туда к черным проводам. Иначе блок питания не запустится.

Ну вот плата от лишнего расчищена, Зеленый провод на месте, из толстых проводов готовим хвостики под клемники, для плюса и минуса.


Проводов нужного сечения в жгуте блока питания не было, хорошо подошли провода для аккумулятора из сгоревшего UPS.

Вот нашел клемники и заодно готовлю светодиод индикации работы БП, это всегда пригодится.

Распаиваем выходные провода и светодиод, делаем предварительный запуск, мало ли что могло случится пока ковырялся на плате.

Осталось разметить отверстия, все просверлить и собрать, навести красоту.

Свободные места в корпусе нашлись, сверло на 8 мм. и все практически готово.

Собираем протягивает, заливаем термоклеем, то что может отвинтится, укладываем провода, впереди поверка и небольшие испытания.

Холостой ход в норме, все стабильно, напряжение 12,3 В.. Можно конечно покопаться и добавить регулировку напряжения в небольшом диапазоне до 14 В.. Но все и так в пределах допустимого, а время уже к концу рабочего дня.

Подключена Моторола GM 340, стоит на передаче, ток 5 А. Для экономного варианта, из БУ, совсем без денег, получился не плохой блок питания. Который еще послужит на пользу человечеству, а не будет просто валяться или разобран за запчасти.

С таким же успехом, можно сделать выводы на напряжения 5В. и 3,3В.

Многие сталкивались с проблемой малой выходной мощности БП компьютера. Чаще всего это выражается в самопроизвольных перезагрузках, ярко выраженной зависимостью от напряжения сети и т.п. Однако, как известно, современные импульсные БП очень надежны. Так почему же происходят все эти досадные мелочи? Давайте заглянем в самый простой (дешевый) и, как следствие, самый распространенный БП.

Фото 1. «Внутренности» обычного БП

На фото №1 видно, что основное пространство занято электролитическими конденсаторами всех емкостей и номиналов, трансформаторами и двумя радиаторами для диодных сборок и стабилизаторов. Итак, чаще всего все проблемы происходят из-за того, что БП перегревается. Несмотря на то, что вентилятор в поте лица вытягивает нагретый воздух из корпуса ПК через отверстия в блоке питания. И тем самым поднимает и без того не маленькую температуру внутри БП, достигающую порой 60-65°С. 90% тепла выделяют радиаторы, а остальные 10% приходятся на катушки индуктивности, резисторы и конденсаторы.

Первое на что следует обратить внимание, это на фильтрующие конденсаторы, установленные в выпрямителе (самые большие), их стандартная емкость 150-220мкф, а напряжение около 200V. С такими параметрами, столь свойственными китайскому минимализму, эти конденсаторы у нас долго не живут, так как все они установлены буквально впритык. Использование таких конденсаторов также сказывается на выходной мощности БП. Их нужно заменить на аналогичные электролитические конденсаторы, но с более высокими параметрами по емкости и напряжению (например 470мкФ х 250V). Выбирайте по возможности, но все же чем больше, тем лучше. Конденсаторы (фото №2 ) на выходе питающих напряжений в ПК (1000\2000х25\35V) тоже лучше сменить. Меньше будет пульсаций и, как следствие, компьютер будет работать более надежно. Далее переходим к радиаторам, на которых установлены стабилизаторы и диодные сборки. Сами по себе радиаторы мало чем могут помочь рассеять ту мощность которую потребляет ПК. Ключи греются вследствие этого сильнее и сильнее.


Фото 2.

На фото №3 видны две самых распространенные формы радиаторов. Как могут эти пластиночки рассеивать заявленные в паспорте 250-300Вт, остается только удивляться. Причем ключи монтируются через изоляционную ленту без какой-либо теплопроводящей пасты.


Фото 3. Формы радиаторов

Основную роль в моей доработке играет радиатор от процессорного кулера, пылившийся на полке в результате перехода на водяное охлаждение. Радиатор крепится с внешней стороны на месте вентилятора (фото №4 ). В радиаторе просверливаются отверстия для крепления по четырем углам. Старые отверстия для вентилятора приходятся как нельзя кстати. Задача такая: выпаять, все диодные сборки и стабилизаторы и перенести их на один радиатор обдуваемый снаружи кулером.


Фото 4.

Затем следует подготовить «подошву радиатора» т.е. то место, где он ранее соприкасался с процессором. Т.к. именно туда мы будем крепить все силовые элементы БП.

Все шесть деталей как раз умещаются на радиаторе (фото №5 ). Их следует крепить через изоляционный материал, а место крепления необходимо промазать теплопроводной пастой. Особое внимание нужно уделить изоляции деталей друг от друга и от радиатора (за исключением деталей с пластмассовым корпусом). После того как деталь выпаяна с платы, ее ножки наращиваются любыми медными проводниками (фото №6 ). Длина должно быть достаточной для монтажа ее на радиаторе. И не забудьте пометить провода, дабы потом не ломать голову о назначении того или иного выводаJ. На фото видно как все это выглядит в жизни.


Фото 5.

Родные радиаторы выпаиваются, а следом выпаиваются и элементы стабилизации (на фото №6 видны провода, которые тянутся к новому «месту жительства» деталей).


Фото 6.

Провода желательно стянуть изолентой или чем-то подобным, чтобы не создавать беспорядка.


Фото 7.


Фото 8.

Вид сверху показан на фото №9 . Да, конечно, конструкция несколько увеличивает габариты компьютера, но это плата за стабильность. Компьютер стал нечувствителен к скачкам напряжения в квартире. Пропали самопроизвольные перезагрузки.


Фото 9.

В итоге при пассивном охлаждении температура радиатора не поднималась выше 55°C, а при использовании кулера составила 27-30°C под нагрузкой.

Будьте внимательны! В боке питания присутствует напряжение, опасное для жизни, поэтому знание техники безопасности и основ радиоэлектроники обязательны!

Разгон блока питания.

Автор не несет ответственности за выход из строя каких-то компонент, произошедший в результате разгона. Используя данные материалы в любых целях, конечный пользователь принимает на себя всю ответственность. Материалы сайта представлены "as is"."

Вступление.

Этот эксперимент с частотой я затеял из-за не хватающей мощности БП.

Когда компьютер покупался его мощности вполне хватало для этой конфигурации:

AMD Duron 750Mhz / RAM DIMM 128 mb / PC Partner KT133 / HDD Samsung 20Gb / S3 Trio 3D/2X 8Mb AGP

Для примера две схемы:

Частота f для этой схемы получилась 57 кГц.


А для этой частота f равна 40 кГц.

Практика.

Частоту можно изменить заменив конденсатор C или(и) резистор R на другой номинал.

Было бы правильно поставить конденсатор с меньшей емкостью, а резистор заменить на последовательно соединенные постоянный резистор и переменный типа СП5 с гибкими выводами.

Затем, уменьшая его сопротивление, измерять напряжение, пока напряжение не достигнет 5.0 вольт. Затем впаять постоянный резистор на место переменного, округлив номинал в большую сторону.

Я пошел по более опасному пути - резко изменил частоту впаяв конденсатор меньшей ёмкости.

У меня было:

R 1 =12kOm
C 1 =1,5nF

По формуле получаем

f =61,1 кГц

После замены конденсатора

R 2 =12kOm
C 2 =1,0nF

f =91,6 кГц

Согласно формуле:

частота увеличилась на 50% соответственно и мощность возросла.

Если R не будем менять, то формула упрощается:

Или если С не будем менять, то формула:

Проследите конденсатор и резистор подключенные к 5 и 6 ножкам микросхемы. и замените конденсатор на конденсатор с меньшей ёмкостью.


Результат

После разгона блока питания напряжение стало ровно 5.00 (мультиметр может иногда показать 5.01, что скорее всего погрешность), почти не реагируя на выполняемые задачи - при сильной нагрузке на шине +12 вольт (одновременная работа двух CD и двух винтов) - напряжение на шине +5В может кратковременно снизиться 4.98.

Начали сильнее греться ключевые транзисторы. Т.е. если раньше радиатор был слегка теплый, то теперь он сильно теплый, но не горячий. Радиатор с выпрямительными полумостами сильнее греться не стал. Трансформатор также не греется. С 18.09.2004 г. и по сегодняшний день (15.01.05) к блоку питания нет никаких вопросов. На данный момент следующая конфигурация:

Ссылки

  1. ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИБП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА.
  2. Конденсаторы. (Примечание: С = 0.77 ۰ Сном ۰SQRT(0,001۰f), где Сном - номинальная емкость конденсатора.)

Комментарии Renni: То что ты повысил частоту у тебя повысилось количество пилообразных импульсов за определенный промежуток времени, а как следствие повысилась частота с которой отслеживается нестабильности по питанию, так как нестабильности по питанию отслеживаются чаще то и импульсы на закрытие и открытие транзисторов в полумостовом ключе происходит с двойной частотой. Твои транзисторы обладают характеристиками, а конкретно своим быстродействием.: Увеличив частоту ты тем самым уменьшил размер мертвой зоны. Раз ты говоришь что транзисторы не греются значит они входят в той диапазон частот, значит тут казалось бы все хорошо. Но, есть и подводные камни. Перед тобой есть схема электрическая принципиальная? Я тебе сейчас по схеме объясню. Там в схеме посмотри где ключевые транзисторы, к коллектору и эмиттеру включены диоды. Они служат для рассасывания остаточного заряда в транзисторах и перегонке заряда в другое плечо(в конденсатор). Вот, если у этих товарищей скорость переключения низкая у тебя возможны сквозные токи - это прямой пробой твоих транзисторов. Возможно из за этого они будут греться. Теперь дальше, там дело не этом, там дело в том что после прямого тока, который прошел через диод. Он обладает инерционностью и когда появляется обратный ток,: у него какое то время еще не восстанавливается значение его сопротивления и по этому они характеризуются не частотой работы, а временем восстановления параметров. Если это время больше чем можно, то у тебя будут наблюдаться частичные сквозные токи из за этого возможны всплески как по напряжению так и по току. Во вторично это не так страшно, но в силовой части - это просто пи#дец,: мягко говоря. Так вот продолжим. Во вторичной цепи эти переключения следующим не желательны, а именно: Там для стабилизации используются диоды Шотки, так вот по 12 вольтам что бы их подпирают напряжением -5 вольт.(прим. у меня кремниевые на 12 вольтах), так вот по 12 вольтам что бы их (диоды Шотки) можно было использовать подпирают напряжением -5 вольт. (Из-за низкого обратного напряжения, невозможно просто поставить диодов Шотки на шине 12 вольт, поэтому так извращаются). Но у кремниевых потери больше чем у диодов Шотки и реакция поменьше, если только они не из числа быстро восстанавливающихся. Так вот, если высокая частота, то у диодов Шотки наблюдается практически тот же эффект что и в силовой части + инерционность обмотки по -5 вольтам по отношению к +12 вольтам, делает невозможным использование диодов ШОТКИ, по этому увеличение частоты может со временем привести к выходу из строя онных. Я рассматриваю общий случай. Так вот едем дальше. Дальше еще один прикол, связанный наконец непосредственно с цепью обратной связи. Когда ты образуешь отрицательную обратную связь, у тебя есть такое понятие как резонансная частота вот этой петли обратной связи. Если ты выйдешь на резонанс, то п#зда всей твоей схеме. Прости за грубое выражение. Потому что эта микросхема ШИМ всем управляет и требуется ее работа в режиме. И на конец "темная лошадка" ;) Ты понял о чем я? Трансформатор он самый, так вот у этой сцуки ведь тоже есть резонансная частота. Так эта дрянь ведь не унифицированная деталь, трансформатор намоточное изделие в каждом случае изготовляется индивидуально - по этой просто причине ты не знаешь характеристик на него. A если ты введешь своей частотой в резонанс? Ты спалишь свой транс и БП можешь спокойно выкидывать. Внешне два абсолютно одинаковых трансформатора могут иметь абсолютно разные параметры. Ну факт тот что не правильной подборкой частоты ты мог спокойно спалить БП.При всех прочих условиях как все таки повысить мощность БП. Повышаем мощность блока питания. Первым делом нам надо разобраться что такое мощность. Формула предельно проста - ток на напряжение. Напряжение в силовой части у нас составляет 310 вольт постоянки. Так вот так как на напряжение мы никак не можем влиять. Транс то у нас один. Мы можем увеличить только ток. Величину тока нам диктует две вещи- это транзисторы в полумосте и буферные емкости. Кондеры по больше, транзисторы по мощнее, так вот надо увеличить номинал емкости и поменять транзисторы на такие у которых больше ток цепи коллектор-эмиттер или просто ток коллектора, если не жалко можешь втулть туда на 1000 мкФ и не напрягаться с расчетами. Так вот в этой цепи мы сделали все что могли, тут больше в принципе сделать ничего не возможно, разве что еще учесть напряжение и ток базы этих новых транзисторов. Если трансформатор маленький - это не поможет. Надо еще отрегулировать такую хрень как напряжение и ток при котором у тебя будет открываться и закрываться транзисторы. Теперь вроде как тут все. Поехали во вторичную цепь.Теперь у нас на выходе обмоток тока доху....... Надо немного подправить наши цепи фильтрации, стабилизации и выпрямления. Для этотго мы берем в зависимости от реализации нашего БП и меняем диодные сборки в первую очередь, что бы обеспечивали возможность протекания нашего тока. В принципе все остальное можно оставить так как есть. Вот и все, вроде бы, ну на данный момент Запас прочности должен быть. Тут дело в том что техника импульсная - вот это ее дурная сторона. Тут почти все построено на АЧХ и ФЧХ, на t реакции.: вот и все

!
Наверное, проблема о которой поговорим сегодня, знакома многим. Думаю, у каждого возникала необходимость увеличения выходного тока блока питания. Давайте же рассмотрим конкретный пример, у вас имеется 19-ти вольтовый адаптер питания от ноутбука, который обеспечивает выходной ток, ну предположим, в районе 5А, а вам нужен 12-ти вольтовый блок питания с током 8-10А. Вот и автору (YouTube канал «AKA KASYAN») понадобился однажды блок питания с напряжением 5В и с током в 20А, а под рукой имелся 12-ти вольтовый блок питания для светодиодных лент с выходным током в 10А. И вот автор решил его переделать.

Да, собрать нужный источник питания с нуля или использовать 5-ти вольтовую шину любого дешевого компьютерного блока питания конечно можно, но многим самодельщикам-электронщикам будет полезно знать, как увеличить выходной ток (или в простонародье ампераж) почти любого импульсного блока питания.

Как правило, источники питания для ноутбуков, принтеров, всевозможные адаптеры питания мониторов и так далее, делают по однотактным схемам, чаще всего они обратноходовые и построению ничем не отличается друг от друга. Может быть иная комплектация, иной ШИМ-контроллер, но схематика одна и таже.




Однотактный ШИМ-контроллер чаще всего из семейства UC38, высоковольтный полевой транзистор, который качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода Шоттки.








После него дроссель, накопительные конденсаторы, ну и система обратной связи по напряжению.





Благодаря обратной связи выходное напряжение стабилизировано и строго держится в заданном пределе. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431.




Изменение сопротивления резисторов делителя в его обвязки, приводит к изменению выходного напряжения.


Это было общим ознакомлением, а теперь о том, что нам предстоит сделать. Сразу необходимо отметить, что мощность мы не увеличиваем. Данный блок питания имеет выходную мощность около 120Вт.






Мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток в 2 раза. Напряжение (5В) умножаем на силу тока (20А) и в итоге получим расчетную мощность около 100Вт. Входную (высоковольтную) часть блока питания мы трогать не будем. Все переделки коснутся только выходной части и самого трансформатора.


Но позже после проверки оказалось, что родные конденсаторы тоже неплохие и имеют довольно низкое внутреннее сопротивление. Поэтому в итоге автор впаял их обратно.




Далее выпаиваем дроссель, ну и импульсный трансформатор.


Диодный выпрямитель довольно неплохой - 20-ти амперный. Самое хорошая то, что на плате имеется посадочное место под второй такой же диод.




В итоге второго такого диода автор не нашел, но так как недавно из Китая ему пришли точно такие же диоды только слегка в другом корпусе, он воткнул пару штук в плату, добавил перемычку и усилил дорожки.




В итоге получаем выпрямитель на 40А, то есть с двукратным запасом по току. Автор поставил диоды на 200В, но в этом нет никакого смысла просто у него таких много.


Вы же можете поставить обычные диодные сборки Шоттки от компьютерного блока питания с обратным напряжением 30-45В и меньше.
С выпрямителем закончили, идем дальше. Дроссель намотан вот таким проводом.


Выкидываем его и берем вот такой провод.


Мотаем около 5-ти витков. Можно использовать родной ферритовый стержень, но у автора поблизости валялся более толстый, на котором и были намотаны витки. Правда стержень оказался слегка длинным, но позже все лишнее отломаем.




Трансформатор - самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течение 15-20 минут для ослабления клея и аккуратно вынимаем половинки сердечника.








Оставляем все это дело минут на десять для остывания. Далее убираем желтый скотч и разматываем первую обмотку, запоминая направление намотки (ну или просто сделайте пару фоток до разборки, в случае чего они вам помогут). Второй конец провода оставляем на штырьке. Далее разматываем вторую обмотку. Также второй конец не отпаиваем.




После этого перед нами вторичная (или силовая) обмотка собственной персоны, именно ее то мы и искали. Эту обмотку полностью удаляем.


Она состоит из 4-ех витков, намотана жгутом из 8-ми проводов, диаметр каждого 0,55мм.




Новая вторичная обмотка, которую мы намотаем, содержат всего полтора витка, так как нам нужно всего лишь 5В выходного напряжения. Мотать будем тем же способом, провод возьмем с диаметром 0,35мм, но вот количество жил аж 40 штук.






Это гораздо больше чем нужно, ну, впрочем, сами можете сравнить с заводской обмоткой. Теперь все обмотки мотаем в том же порядке. Обязательно соблюдайте направление намотки всех обмоток, иначе ничего работать не будет.


Жилы вторичной обмотки желательно залудить еще до начала намотки. Для удобства каждый конец обмотки разбиваем на 2 группы, чтобы на плате не сверлить гигантские отверстия для установки.




После того как трансформатор установлен, находим микросхему tl431. Как уже ранее было сказано, именно она задает выходное напряжение.


В ее обвязке находим делитель. В данном случае 1 из резисторов этого делителя, представляет из себя пару smd резисторов, включенных последовательно.


Второй резистор делителя выведен ближе к выходу. В данном случае его сопротивление 20 кОм.


Выпаиваем этот резистор и заменяем его подстроечным на 10 кОм.


Подключаем блок питания в сеть (обязательно через страховочную сетевую лампу накаливания с мощностью в 40-60Вт). К выходу блока питания подключаем мультиметр и желательно не большую нагрузку. В данном случае это маломощные лампы накаливания на 28В. Затем крайне аккуратно, не дотрагиваясь платы, вращаем подстроечный резистор до получения желаемого напряжения на выходе.


Далее все вырубаем, ждём минут 5, дабы высоковольтный конденсатор на блоке полностью разрядился. Затем выпаиваем подстроечный резистор и замеряем его сопротивление. После чего заменяем его на постоянной, либо оставляем его. В этом случае у нас еще и возможность регулировки выхода появится.

Блок питания компьютера - это очень важный элемент, представляющий собой источник электропитания. Без него невозможно обеспечение компьютера необходимой ему энергией. Его работа заключается в преобразовании напряжения сети до нужного уровня. Важнейшей составляющей блока питания является мощность, ведь именно от неё зависит, насколько стабильно будет работать ПК. Например, при недостаточном значении мощности, ПК просто выключится . Неисправности подобного рода случаются нечасто, но, если случаются, приносят массу неудобств пользователю. В этой статье подробно рассмотрим, как узнать и увеличить мощность блока питания компьютера. Давайте разбираться. Поехали!

Для начала необходимо узнать: сколько ватт в блоке питания. Как это сделать? Вы можете рассчитать этот показатель самостоятельно либо (что гораздо проще) воспользоваться специальным сервисом на сайте casemods.ru, который всё сделает за вас. Вам же останется только указать нужную для расчёта информацию, а именно:

  • Тип ядра ЦП;
  • Разгон ЦП;
  • Сколько установлено процессоров;
  • Количество ЖД и оптических приводов;
  • Мощность материнской платы ПК;
  • Сколько имеется слотов оперативной памяти ;
  • Модель и разгон установленной видеокарты.

Как только все перечисленные параметры будут заданы, сервис автоматически посчитает и выведет на экран значения средней и пиковой мощностей. Помимо casemods.ru, вы можете воспользоваться другими сервисами, которых в интернете немало.

Если перед вами стоит выбор БП для компьютера, то обращайте особое внимание на компанию-производителя. Не стоит приобретать блоки питания малоизвестных марок, так как их продукция, как правило, не отличается высоким качеством, а характеристики могут быть завышены вполовину. Всё это может являться причиной поломок и неисправностей в процессе эксплуатации.

  • Termaltake;
  • Zalman;
  • CoolerMaster;
  • PowerMan;
  • Hiper.

К сожалению, так же легко определить мощность уже установленного блока питания нельзя. Но существуют другие способы, позволяющие это сделать. Например, вы можете снять крышку с системного блока и поискать специальную наклейку, содержащую всю необходимую информацию.

Теперь перейдём к тому, как увеличить мощность блока питания. Эта операция поможет вам несколько улучшить работоспособность ПК. Чтобы повысить мощность БП, выполните следующие действия:

  1. Откройте БП.
  2. Измерьте трансформатор. Размеры должны быть не менее чем 3х3х3 см. В противном случае лучше ничего не делать.
  3. Заменить большие высоковольтные конденсаторы. Рекомендуется установить их номиналом не менее 470 микрофарад / 200 вольт. Также обратите внимание, что дроссели ставят исключительно в низковольтную область БП. Изготовить их можно по-разному.
  4. Вы можете сами намотать провод с лаковой изоляцией на ферритовое кольцо. Также можно снять дроссели со старых блоков питания.
  5. Распаять сглаживающие конденсаторы.
  6. Произвести замену диодной сборки.
  7. Снизьте напряжение канала +12, чтобы обезопасить ПК. Для этого нужно впаять диод большой мощности в разрывы жёлтых проводов.

Проводить подобные операции стоит только опытным пользователям, понимающим устройство компьютера. Придётся потратить и время, и силы, но, в итоге, вы получите более надёжный и мощный БП, который долго прослужит вам. Пишите в комментариях, была ли полезна для вас эта статья, и задавайте интересующие вопросы по рассмотренной теме.