Управление блоком питания. Ремонт блока питания компьютера

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

Выполнять ремонт компьютерного «железа» самостоятельно – дело достаточно сложное. При этом, пользователь должен точно знать, какой именно из всех компонентов нуждается в ремонте. Ремонтировать блок питания компьютера имеет смысл, если он (как минимум) снят с гарантии, а также – стоимость замены делает такой ремонт действительно целесообразным. Качественный ремонт в СЦ может по цене доходить до стоимости «бюджетных» БП. Обычно, кое-что пользователь может сделать и сам… При условии, что имеет навыки работы с электрооборудованием (220 Вольт), и хорошо понимает опасность ошибки в подобной работе.

Рекомендации по самостоятельному ремонту компьютерных блоков питания:

  1. Подключение к сети 220 В любого блока питания необходимо осуществлять через «быстрый» предохранитель на ток не более 2А.
  2. Первый запуск после ремонтных работ производится последовательно с лампой накаливания. О коротком замыкании на входе устройства скажет накал лампы. Такой БП, включать в сеть – нельзя.
  3. В процессе как диагностики, так и ремонта, необходимо проводить разряд всех электролитических емкостей (после каждого включения/отключения). Нужно ждать 3-5 минут, либо использовать электролампу на 220В – вспышка укажет, что разряд действительно произведен.
  4. Все ремонтные операции проводятся при полностью отключенном от сети блоке питания.

Желательно, чтобы рядом с рабочим местом не было заземленных предметов (таких как: отопительные радиаторы, трубы и т.д.)

Собственно, в высоковольтную часть схемы БП – мы не «полезем». Самостоятельный ремонт сводится к: поиску «кольцевых» трещин; замене силовых диодов (если необходимо); замене «плохих» конденсаторов (если необходимо).

В любом случае, ремонт блока питания компьютераначинается с его демонтажа из ПК. Конечно, это стоит сделать, если вы на 100% уверены, что ремонтировать нужно именно БП.

Разбор корпуса самого БП осуществляется откручиванием саморезов (винтов), крепящих две половинки друг к другу. Используется крестовая отвертка.

Примечание: выполняя самостоятельный разбор БП, вы повреждаете пломбу изготовителя – что влечет лишение дальнейшей гарантии на это устройство.

Непосредственно о том, как производится ремонт блока питания и об основных неисправностях – рассказано далее. Чаще всего, отказы, которые встречаются, могут быть обнаружены и устранены достаточно просто:

  • Проверьте, присутствует ли «дежурное» напряжение (+5В SB). Это – фиолетовый провод 24-контактного (основного) разъема блока питания. Между «черным» и «фиолетовым» – должно быть напряжение +5 Вольт. Проверить его наличие можно и до разбора корпуса блока, при этом, сам БП должен быть включен в сеть.

  • Разобрали блок питания – смотрим на плату. Часто встречаются неисправные (вспухшие) электролитические конденсаторы. Это можно определить визуально, чаще всего подвержены дефекту именно электролитические конденсаторы не очень большой емкости (470-220 мкФ, и меньше). Такой конденсатор необходимо отпаять с платы (для этого, ее придется снять), а новый, должен быть той же емкости и рассчитан на то же (или – большее) напряжение. Внимание: соблюдайте полярность выводов! На импортных, «полосой» обозначен «минус».

  • Следующая неисправность – это выход из строя низковольтных диодов (12 или 5В). Они могут быть конструктивно выполнены как сборки из двух диодов (плоский корпус с тремя выводами), бывает и раздельная установка.


  • С проверкой/заменой диодов – немного сложнее, чем с конденсаторами. Для проверки, нужно выпаивать один вывод каждого диода (можно – и всю деталь). Как «звонится» исправный диод – все знают. При прямом подключении, тестер покажет значение (близкое к «0»), при обратном – ничего не показывает (сам тестер – включен в режиме «диод»):

  • На замену, рекомендуется устанавливать диоды Шоттки, имеющие аналогичный (или – больший) заявленный ток/напряжение.
  • Осуществляя ремонт блока питания самостоятельно, отверните винты самой платы и снимите ее (убедитесь еще раз, блок – должен быть обесточен). Внимательно смотря на монтаж, довольно быстро можно будет заметить дефекты «кольцевых трещин»:

Их нужно «пропаять», затем – все собрать и включить (возможно – все заработает).

Отдельно нужно сказать про «дежурное» питание. Как правило, ремонт блока питания путем просто замены сгоревших транзисторов, результата не даст – транзисторы снова сгорают, причем – те же. Виновником поломки может являться и трансформатор. Это – деталь дефицитная, которую трудно купить и найти. В редких случаях, причиной отсутствия 5В «дежурного» напряжения может быть изменение рабочей частоты, за которую отвечают «частотозадающие» детали: резистор и конденсатор (не электролитический).

Примечание: чтобы произвести отпайку детали, установленной на теплоотводе, предварительно демонтируют (откручивают) ее крепление. Установка – производится в обратном порядке (сначала – крепление, затем – пайка). Старайтесь не нарушать изоляцию детали от теплоотвода (как правило, используется слюда).

Запуск блока питания: проверьте наличие +5V SB. Если оно есть – попробуем запустить блок питания (соединяют «салатовый» провод, PS-ON, с «черным», общим).

На этом, возможности пользователя по самостоятельному ремонту – можно сказать, исчерпываются.

Внимание! Не занимайтесь самостоятельным ремонтом блока питания, если вы не имеете опыта в электротехнике! После каждого отключения, необходимо разряжать высоковольтные конденсаторы (ждать 3-5 минут)!

Подробнее: «вспухшие» конденсаторы и их замена

Надеемся, по фотографии – понятно, какие конденсаторы «вспухли», какие – нет.

Если на плате есть несколько одинаковых (или – набор параллельно соединенных), из которых «вспух» хотя бы один – менять лучше все. Фирмы, производящие надежную продукцию: Nichicon, Rubycon. Но такие вы – вряд ли найдете. Из бюджетных, можно посоветовать Teapo, Samsung.

При установке, необходимо соблюдать полярность (рабочее напряжение – должно быть таким же или больше, чем обозначено на заменяемом).

На фото – конденсатор на 16 Вольт, 470 МикроФарад (Rubycon, самая дорогая серия).

Технология пайки

Производя монтаж и демонтаж деталей на плате компьютерного БП, рекомендуется использовать паяльник мощностью 40 Ватт. В отдельных случаях, для громоздких деталей («мощных» выводов), можно пользоваться паяльником и на 60 Ватт (но – не более).

Самый простой припой (типа ПОС-60) – в данном случае, подходит. Лучше взять в виде тонкой проволоки.

Флюс – не используется (достаточно иметь в наличии обычную канифоль).

Демонтаж детали:

  • Греть паяльником, до полного расплавления припоя;
  • Используя устройство для отпайки (из пластика), быстро произвести откачку жидкого припоя:

  • Повторить пункты 1 и 2.

Правильно отпаянная деталь, легко самостоятельно выходит из платы (не нужно «поддавливать» вывод паяльником).

Если демонтируется конденсатор – предварительно можно «откусывать» выступающий вывод бокорезами.

Если отпаивается силовой элемент – необходимо полностью выкрутить винт крепления.

Замена предохранителя

В схеме любого БП, предохранитель идет сразу после розетки питания (последовательно с одной из фаз 220 В). Сами предохранители, как детали, различаются по силе тока (то есть, сколько ампер он выдержит в максимуме). Также, предохранители делятся на «F»-тип («быстрые»), «T»-тип («тепловые»).

Если предохранитель необходимо заменить – вы должны выяснить, на какой номинал (силу тока) он был рассчитан. Также, желательно знать «тип».

Замена на предохранитель с большим номиналом – не допускается. Замена F на T – тоже.

Примечание: если вы знаете, какой нужен «ток», но не знаете «тип», можете устанавливать новый предохранитель типа «F».

Именно так. А чтобы не было вопросов, почему он чаще сгорает – проще будет все же узнать достоверные данные (как номинал, так и тип).

Если предохранитель – в стеклянном цилиндрическом корпусе, то в любом случае он рассчитан на 220В электросети. Применение других типов конструкции – не допускается.

Что используется (приборы и материалы)

При выполнении ремонта блока питания компьютера, не понадобятся какие-то «нестандартные» устройства или оборудование:

Но то, что на рис. – подразумевает, что вы как минимум умеете обращаться с: паяльником, тестером (щипцами, бокорезами…). Для профессионального ремонта, здесь должен был быть осциллограф (достаточно полосы пропускания 3 МГц). Вот только, цена его… (как 2-3 новых БП).

Надеемся, приведенная здесь информация – будет полезна для выполнения «начального» ремонта. Более сложные операции (ремонт трансформатора, работа с высоковольтной «обвязкой», восстановление генерации) – под силу профессионалам (имеющим опыт именно в ремонте БП).

Импульсный блок питания – не очень «простое» устройство, в некоторых случаях восстановление жизнеспособности – производится полной заменой деталей (того или иного узла). Более сложный, «самостоятельный» ремонт – не обязан в каждом случае «увенчаться успехом»…

Характеристики диодов

Сам по себе диод, как отдельный элемент, бывает одного из трех типов: просто диод (p-n переход), СВЧ-диод, и диод Шоттки (квантовый). Нас интересует только последний из них.

Задача диода – пропускать ток в одну сторону (и не пропускать – в другую). Если падение напряжения в прямом включении на обычных диодах – 1 или 2 вольта, то на диодах Шоттки – близко к нулю. Напряжения, получаемые в компьютерном БП – невысокие (12 Вольт и 5), вот почему используются только Шоттки.

Вы можете посмотреть, чему равно падение напряжения на диоде. Тестер должен быть в режиме «диод» (как говорилось выше). Если он «покажет» от 0,015 до 0,7 – то, все правильно. Такие значения – типичны для Шоттки-диода (меньше – это уже «пробой»).

Внутри схем блоков питания, используют пару диодов, включая их встречно:

Для положительного напряжения – используют «сборки» (трехвыводные, в них – 2 диода). Одиночные диоды (круглый корпус) – обычно используют для получения отрицательных напряжений. При замене, одиночные диоды (даже если «полетел» один), рекомендуется менять «парой».

Как лучше подобрать замену? Если на «прямоугольном» пластмассовом корпусе (3-х выводном) – написана марка:

То, с «круглыми» – будет сложнее. Полоска на корпусе означает лишь «направление».

Если мы знаем марку диодов – ищем такие же, или – смотрим параметры (напряжение, ток), и ищем аналог (с таким же или чуть большим значением).

Если не знаем – что ж, надо «скачать» схему вашего блока питания, и посмотреть. Между прочим, в СЦ тоже так поступают (а вот думать, гадать, какая там сила тока – не очень благодарное занятие). Не забывая, что компьютерные БП – содержат только диоды Шоттки.

Примечание: устанавливать диодные сборки/диоды с заведомо большими параметрами тока и напряжения – не рекомендуется (допустим: было 50 Вольт 12 А, а ставят 50 Вольт 20 А). Не нужно этого делать, так как: может быть другой корпус. Кроме чего, есть «дополнительные» параметры (которые в более «мощном» случае – отличаются «не в лучшую» сторону).

Типичный пример (сборки, маломощный БП): 12CTQ040 (40В, 12А); 10CTQ150 (150В, 10А).

Пример одиночных диодов: 90SQ045 (45В, 9А); SR350 (50В, 3А).

Замена вентилятора БП

Как выбрать новый вентилятор для БП? Он, то есть вентилятор, должен быть: с гидро-подшипником, трехпиновый (3 провода в кабеле), и – подходящих размеров (12см/8 см).

Еще – важно, что в БП используется низкооборотистый «вент», обычно это 1200-1400 (для 12 см) и 1600-2000 (для 8).

При старте БП, на вентилятор подается не все напряжение (не 12 Вольт), а, скажем так, 3-5 Вольт. Важно, чтобы вентилятор умел «стартовать» при таких напряжениях (иначе, он не раскрутится после включения). Уточняйте «стартовое напряжение» вентилятора, будьте внимательны.

Способ подключения вентилятора к БП:

  1. Два проводка (черный, красный) припаяны к плате блока питания.
  2. Два проводка (черный, красный) присоединяются коннектором 2-пин к коннектору платы.
  3. Три проводка (черный, красный + желтый) присоединяются коннектором 3-пин к плате.

В первых двух случаях, желтый провод – тахометр – можно вывести из корпуса БП для мониторинга самой материнской платой.

Обратите внимание на такой параметр, как высота вентилятора. Если взять больше, чем нужно, корпус БП – «не закроется».

При замене, важно, чтобы производительность нового вентилятора (в «литрах в минуту»), была бы как минимум, той же, что и у старого вентилятора. Пожалуй, этот параметр – является основным (в описании товара, он обычно – указывается).

Таким образом, можно сразу провести «мод» блока питания, установив не менее производительный, но более «тихий» пропеллер (гидро-подшипник в бюджетных БП – не часто идет «по умолчанию»).

Вот пожалуй и все, что можно сказать про вентиляторы. Выбирайте.

Эквивалент нагрузки

Блок питания, при запуске «проводком», стартовал. Не спешите устанавливать его в компьютер. Попробуем протестировать БП на эквиваленте нагрузки.

Берутся такие резисторы:

Они называются «ПЭВ» (марка медного провода, из которого сделаны). Можно взять на 25 Ватт, или на 10 (на 7,5):

Главное здесь – составить схему из них (соединяя: параллельно, последовательно), чтобы получилось «мощное» сопротивление (3 Ома и 5-6 Ом).

5-омную нагрузку, мы будем включать в «12В» линию, 3-омную – к «5В». Для подсоединения к БП, используется Molex-разъем (желтый провод – это 12 В):

Примечание: при создании «эквивалента», учитывайте мощность, которая приходится на каждый резистор (она не должна превосходить значение, на которое он рассчитан).

Зная напряжение на резисторе, мощность находится по закону: напряжение в квадрате / сопротивление.

Пример: 4 резистора по 20 Ом – «в параллель», мощность каждого – 7,5 Ватт (пойдет на тестирование линии «12-вольт»).

Можно использовать и галогенные лампочки на 12V (допустим: две по 10 Ватт, в параллель).

Итак, подключив эквивалент нагрузки к Molex-разъему, пробуем включить блок питания («салатовый»/«черный», разъем ATX). Шнур «220 Вольт», тоже должен быть «штатный».

Если включение произошло – подождите 10 секунд. Не уходит ли блок в защиту? Вентилятор должен вращаться, все напряжения – находиться в нужном диапазоне (допускается отклонение не более 5-6%).

Собственно, в таком, «щадящем» для него режиме, любой БП должен работать сколь угодно долго.

Можно сделать и более мощный «эквивалент». То есть, сопротивление в Омах – будет еще ниже. Главное – не «переборщить» (для каждого БП, максимальная сила тока – указана):

Сила тока через нагрузку равна напряжению, деленному на ее сопротивление (в Омах). Ну, это – вы и так знаете…

При тестировании, «нагрузка» будет включаться только в две линии («плюс 5», «плюс 12»). Этого, в общем, достаточно. Другие напряжения («минусы»), можно промерить вольтметром (на 24-пиновом штекере).

Примечание: если линию «+12» вы хотите «испытывать» с силой тока выше 6А – не используйте Molex-разъемы! 4-пиновый разъем питания процессора (+12 В) – держит до 10 Ампер. При необходимости, нагрузка «раскидывается» между двумя разъемами (процессорным, «молексом»).

Примечание 2: При выполнении любых соединений, используйте провод достаточного сечения (на 1 мм кв. – ток 10 А).

На эквиваленте нагрузки, будет выделяться тепло (тепловая мощность равна электрической). Позаботьтесь об охлаждении (притоке воздуха). В процессе тестирования, первые 2-3 минуты – лучше следить, не перегреется ли один из резисторов.

На фото – «серьезный» подход к созданию «эквивалента».

Ремонт блока питания

Один из самых важных блоков персонального компьютера - это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 - 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

    Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

    Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

    Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

    Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

    Выходные выпрямители. С помощью выпрямителя происходит выпрямление - преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115" ). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110...127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220...230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост . При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180...220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Объясняем просто

Читатель может не переживать: это интересно и не скучно. Мы в простых словах объясним, как устроено питание компьютера, а потом на конкретных примерах рассмотрим технические вопросы. Мы объясним, как настраивать энергоэффективность и следить за потерями мощности. И, далее, сделаем несколько замечаний касательно безопасности, которые следует учесть перед тем, как переходить от теории к практике.

Примеры из практики

Большой размер против компактного, энергоэффективность против производительности; мы протестируем три компьютера с различной архитектурой энергоснабжения, подсчитаем, сколько мощности они расходуют и, наконец, подытожим, какого типа блок питания лучше использовать для получения лучших результатов по соотношению энергопотребления и производительности.

Немного о частоте

Помните старые ламповые радиоприёмники, которые были в ходу давным-давно? Так вот: их большой вес объяснялся не только использованием деревянного каркаса. Свою роль играл и тяжелый, массивный трансформатор; он, как ни странно, имеет прямое отношение к нашей теме.

Именно в этих устройствах был применён инженерный трюк, который позже станет неотъемлемой частью любого современного источника питания. Для преобразования высоких значений переменного тока в низкие и достижения гальванического разделения протекающего тока там применялись трансформаторы, сделанные из железных пластин.

Если обычный трансформатор на 50 Гц будет сравнительно большого размера, то так называемые выходные трансформаторы, которые могут работать с переменным напряжением с частотой от 100 Гц до 16 кГц куда меньше, и при этом имеют такую же мощность. Чем сильнее частотная характеристика будет урезана снизу, тем более мощным можно сделать трансформатор при сохранении прежних размеров. Впоследствии, с изобретением таких новых компонентов, как электровакуумный диод и, позднее, применения полупроводников, их преимущества стали использоваться и в других областях, открывая новые возможности.

Что это значит применительно к моему ПК?

Высокое энергопотребление современных компьютеров диктует более высокие требования к блокам питания, так что обычные трансформаторы их уже не удовлетворяют. Они были бы слишком большими и неудобными. Вместо этого сейчас используются импульсные источники питания, в которых применяется тот же "трюк" с частотой, как на старых радиолампах. Они выполняют работу по максимально эффективному обеспечению оборудования электроэнергией. Аналоговые решения не подходят для современной техники. Вместо этого сегодня применяются транзисторы, которые преобразуют частоту напряжения в сети, что позволяет нам использовать трансформаторы меньшего размера. Именно в этой технологии корни названия "импульсный блок питания" ("switching power supply"). Далее мы подробно рассмотрим, как это всё работает. Не беспокойтесь: это проще, чем вы думаете.

Что внутри и как оно работает?

Преобразование напряжения в импульсном источнике питания включает в себя несколько шагов. Фильтр основного напряжения отвечает за пики напряжения, гармоники и помехи, возникающие в сети. На втором этапе переменный ток выпрямляется и стабилизируется. Сейчас мы имеем дело с напряжением 350 В, которое потом через инвертор трансформируется в переменное напряжение с частотой от 35 до 50 кГц. Современные компактные трансформаторы работают именно с такой частотой.

Системе требуются разные напряжения: 3,3, 5 и 12 В, поэтому у простых блоков питания может использоваться одна выходная обмотка с отводами для напряжений с разным количеством витков, или отдельные обмотки для каждого напряжения. Блоки питания высшей ценовой категории имеют отдельные трансформаторы для разных рабочих напряжений, которые затем снова выпрямляются и стабилизируются. Важно, чтобы эти напряжения оставались постоянными. Вне зависимости от степени потребления энергии системы, напряжение не должно отклоняться больше, чем на 5 процентов. В блоки питания для этого встраивается специальный контур регулирования. По этой же причине импульсный источник питания всегда находится в работе: в противном случае вам грозит перепад напряжения.

Это подводит нас к следующей теме: эффективность. Когда вы смотрите на новую машину, логично спросить у продавца: "Ну, и какой у неё расход бензина на 100 км?" Что касается ПК, то они не расходуют топлива, однако вопрос эффективности актуален и для них. Это, кстати, одна из распространённых ошибок у людей, которые сами собирают свои компьютеры: увеличенное энергопотребление приводит к серьёзному увеличению итоговой стоимости оборудования. Хотите убедиться, что вы не сделаете эту ошибку? Читайте дальше.

Эффективность, эффективность, эффективность!

Сколько нужно и сколько затрачивается?

Немного перефразируем этот вопрос. Как правило, мы называем эффективностью соотношение количества потребляемой и реально тратящейся энергии. Для повышения эффективности, таким образом, нужно, чтобы блок питания с пользой передавал максимальное количество энергии, которую он берёт от сети.

Это так, но нам бы хотелось развеять одно распространённое заблуждение касательно эффективности. Если мы используем блок питания мощностью 500 Вт, КПД которого 75 %, то это не означает, что питание ПК составит 375 Вт. Наоборот: питание компьютера будет по-прежнему 500 Вт, однако потребление энергии составит 666 Вт. Таким образом, правильная формулировка нашего вопроса будет такой: "Сколько энергии тратится для того, чтобы обеспечить компьютер заявленной мощностью?"

Пример:

Предположим, что наш ПК требует 600 Вт электроэнергии. Эффективность блока питания составляет 80 %. Вот что мы получим в этом случае:

600 Вт / 0,80 = 750 Вт

Теоретически, для питания компьютера в этом случае тратится 750 Вт, 150 Вт из которых тратится впустую (как правило, рассеивается в виде тепла).

Даже потери не постоянны

Подсчёты из нашего примера будут актуальны только в идеальной ситуации и поскольку мы не располагаем супер-эффективными технологиями, как в Star Trek, вещи работают далеко не так, как это заявляется. Компьютер работает в различных режимах, от режима простоя до полной нагрузки, плюс множество промежуточных вариантов. Очевидно, что при работе в режиме простоя будет расходоваться минимальное количество энергии, а в режиме полной нагрузки (обработка 3D-графики, сложные вычисления) - максимальное. Таким образом, вряд ли мы столкнёмся с постоянными показателями потребления энергии. Нам придётся работать как минимум с двумя схемами (режим простоя и режим полной нагрузки). Теперь давайте посмотрим на эффективность нашего гипотетического блока питания на 600 Вт в разных режимах.

Картина немного усложняется. Если посмотреть на кривую, то самая высокая эффективность достигается при уровне 50% от возможной суммарной нагрузки.

Наблюдательный читатель может предположить, что решить эту проблему можно, просто используя вдвое более мощный блок питания. Это, в принципе, верно, однако мы забываем про одну вещь, а именно - режим простоя. В этом плане у современных блоков питания начинаются проблемы. При сокращении нагрузки до 20% их эффективность падает до 60 или даже 50%. И, как ни странно, ситуация выглядит только хуже с использованием энергосберегающих механизмов, которые реализованы в современных компьютерах. Так, например, мощная система с хорошей видеокартой, которая тратит в режиме полной нагрузки 600 Вт, в режиме простоя будет обходится всего лишь в 65 Вт. Ясно, что нельзя перегружать блок питания, однако не очень оправдано и "недогружать" его.

Пример:

Итак, предположим, что наш блок питания на 600 Вт поставляет компьютеру 65 Вт мощности. Какова будет нагрузка?

(100% / 600 Вт) * 65 Вт = 10,83%

Теперь посмотрим на график, и станет понятно, что не всё так уж хорошо. После этого повторим наши расчеты, на сей раз - предполагая, что эффективность составит 68 %.

65 Вт / 0,68 = 96,6 Вт

Несмотря на то, что система действительно тратит только 65 Вт, блок питания всё равно ест 100 Вт и переводит остатки в тепло. Причём это - расчёт для более эффективного из двух наших гипотетических блоков питания. Ясно, что в перспективе долгого использования такое устройство приведёт к неприятным дополнительным затратам.

Впрочем, это всё же гипотетический пример. Дальше мы собираемся говорить о том, что будет происходить в реальной практике. Как выяснилось, мы легко можем проследить воздействие эффективности. Мы собираемся, помимо прочего, доказать, что дешёвые блоки питания в перспективе долгосрочного использования оказываются дороже, чем это можно предположить.

Немного о мощности

Не беспокойтесь, для понимания, как это работает, вам не потребуются университетские знания физики. Мы просто объясним, чем отличается хороший блок питания от плохого. Если вы знаете основные принципы работы, то вряд ли совершите неудачную покупку. Итак, идём дальше.

Реактивный ток и реактивная мощность

Одна из важных проблем, касающихся энергопотребления при использовании импульсных источников питания - это "реактивный" ток, вызванный индуктивностью. Обратите внимание, что потребляемая мощность в режиме ожидания не имеет ничего общего с режимом простоя. Кроме того, нагрузка в этом случае никак не пересекается с энергопотреблением при полной нагрузке, однако использует те же компоненты. Реактивную мощность нужно существенно снижать (в лучшем случае её вообще быть не должно), чтобы она не приводила к потере энергии на сопротивлении, которая будет выделяться в виде тепла. Подобное бесполезное потребление энергия должна уменьшаться практически до нуля внутренними цепями импульсных блоков питания.

Эффективная мощность и полная мощность

Эффективная мощность противоположна реактивной в том, что она отражает реальное энергопотребление. Полная мощность представляет собой сумму активной и реактивной мощностей.

Коэффициент мощности

Этот показатель высчитывается как отношение между эффективной мощностью и полной мощностью и находится в промежутке между 0 (худший результат) и 1 (идеальный результат). Итак, при покупке блока питания вам нужно убедиться, что у него высокий коэффициент мощности: это один из ключевых показателей качества для блоков питания.

Active PFC

Active Power Factor Correction (PFC) означает активную коррекцию коэффициента мощности. Коэффициент мощность является важной характеристикой для блока питания, поскольку он отражает соотношение между активной и полной мощностями.

Преимущества:

  • Идеальной можно считать активную мощность около 99%;
  • Высокая эффективность (при низких нагрузках уже меньше);
  • Очень стабильная подача питания;
  • Меньшее энергопотребление;
  • Меньшее тепловыделение;
  • Меньший вес.

Недостатки:

  • Стоит дороже;
  • Большая вероятность выхода из строя.

Passive PFC

С помощью пассивной коррекции коэффициента мощности реактивные токи можно снижать, используя крупные катушки индуктивности. Подобный способ проще и дешевле, но он не самый эффективный.

Преимущества:

  • Стоит дешевле;
  • Отсутствие электромагнитных помех.

Недостатки:

  • Требуется лучшее охлаждение;
  • Не подходит для высоких нагрузок;
  • Высокое энергопотребление (потери энергии);
  • Тяжелее;
  • Низкая активная мощность (примерно от 70% до 80%).

Как определить эффективность блока питания?

Основные принципы, правила и положения

Одним из ключевых показателей эффективности блока питания является, соответствует ли он стандартам Energy Star 5.0 и 80 PLUS. Последний будет приоритетным для вычислительной техники и является стандартом, признанным повсеместно в мире. Кроме того, если речь идёт о европейских странах, то нужно также проверить соответствие стандартам CE и ErP.

Блоки питания стандарта 80 PLUS являются более эффективными.

Принципы и спецификации, естественно, влияют на эффективность и на качество питания. Блок питания, отмеченный сертификатом 80 PLUS, будет соответствовать определенным требованиям, что устанавливается посредством набора тестов. Мы хотели бы упомянуть, что условия стрессового тестирования 80 PLUS не соответствуют напрямую спецификации ATX, при этом они выполняются в условиях американских электрических сетей питания, работающих с меньшим напряжением. В условиях России и Европы, с сетями 230 В, эффективность блоков питания 80 PLUS будет чуть выше, чем в США.

Концепция 80 PLUS была расширена: сейчас она подразумевает несколько уровней эффективности, Platinum, Gold, Silver и Bronze, и спецификации каждого из этих стандартов имеют собственный набор требований. Таким образом, блок питания стандарта "80 PLUS Platinum" или "80 PLUS Gold" будет более эффективным, чем обычный блок питания. В то же время, эти блоки питания и стоят дороже.

По таблице ниже можно проследить, как уровень спецификации устройства влияет на его работу при заданной нагрузке, и оценить каждый конкретный уровень спецификации.

Эффективность при нагрузке 20% Эффективность при нагрузке 50% Эффективность при нагрузке 100%
80 Plus 80,00% 80,00% 80,00%
80 Plus Bronze 82,00% 85,00% 82,00%
80 Plus Silver 85,00% 88,00% 85,00%
80 Plus Gold 87,00% 90,00% 87,00%
80 Plus Platinum 90,00% 92,00% 89,00%

Потребление энергии выключенного компьютера

При выключении компьютера? блок питания, как правило, продолжает работать. Это необходимо для поддержки некоторых функций, как Wake-on-LAN. Блок питания будет тратить некоторое количество мощности даже тогда, когда компьютер выключен. Современные блоки питания, особенно те, которые продаются в Европе, согласно заявлениям производителей, тратят не более 1 Вт в таком режиме. Если для вас действительно важна экономия, то такое решение будет правильным.

Какие линии напряжения важны для ПК?

Мы подходим к одному из ключевых моментов, связанных с энергопотреблением: мощность, затрачиваемая при различных входных напряжениях. Современные ПК потребляют большую часть энергии по линии 12 В. Два других напряжения (3,3 В и 5 В) нельзя назвать несущественными, но их роль за последние годы значительно снизилась. Как правило, если блок питания соответствует требованиям по линии 12 В, то он будет достаточен и для других линий. Но вот обратное уже не совсем верно. Давайте посмотрим на заявленные спецификации двух блоков питания.


Второй блок питания заявлен как модель на 550 Вт, но по двум 12 В линиям он может давать мощность всего 380 Вт. При этом эта мощность достигается только в том случае, если другие линии не используются. Сегодня никому не требуется мощность 315 Вт по линиям 3,3 и 5 В. Поэтому данный блок питания, способный давать около 350 Вт по линии 12 В, вряд ли подойдёт для современного игрового ПК. Он хорош для рекламы высокой мощности, но энтузиастам лучше держаться от таких моделей подальше.

Базовая стоимость против энергосбережения

Качественное оборудование обойдётся дороже при покупке, однако позволит сэкономить в ходе эксплуатации. Именно поэтому мы собираемся рассмотреть определённые компоненты устройств с тем, чтобы определить, в каких условиях какой блок питания приведёт к лучшим результатам при эксплуатации. Некоторые из наших результатов могут удивить вас.

Финансовой стороной вопрос, однако, не исчерпывается: нас также интересует долговечность, надёжность и безопасность.

Безопасность приоритетнее денег: не сжечь аппаратуру

Китайские фейерверки

Кроме шуток, в реальности это серьёзный вопрос. Покупая дешёвую модель блока питания, вы рискуете погореть в буквальном смысле, причём риску подвергается не только сам блок питания, но и другие компоненты системы.

Самые важные схемы защиты в современных блоках питания

Знание - это полдела, как гласит пословица, и поэтому мы собираемся предоставить вам полную информацию. В таблице ниже вы найдёте расшифровки обозначений наиболее важных составных частей современных блоков питания. После этого достаточно будет убедиться, что в ваш блок питания включены необходимые элементы безопасности.

Аббревиатура Защита
OVP Over-Voltage Protection (защита от перенапряжения, первичная и вторичная)
UVP Under-Voltage Protection (защита от пониженного напряжения, первичная и вторичная)
NLO No-Load Operation (режим "без нагрузки")
SCP Short-Circuit Protection (защита от короткого замыкания)
OCP Over-Current Protection (защита по току)
OLP (OPP) Overload Protection (защита от перегрузки)
OTP Overheating Protection (защита от перегрева)


Качественные блоки питания, как правило, включают цифровые схемы защиты. К сожалению, некоторые компании до сих пор продают дешёвые модели, оснащённые обычным предохранителем, функции которого ограничены "защитой от короткого замыкания и перегрева".

Скупой платит дважды


Здесь у нас два наглядных примера того, что может произойти, когда имеешь дело с дешёвым оборудованием: дело пахнет палёной проводкой. Нам кажется, что эти изображения говорят сами за себя. Это выглядит достаточной причиной для приобретения приличного блока питания.

Теперь мы приближаемся к концу первой части нашего исследования. Дальше мы собираемся перейти от теории к практике и посмотреть, как наши знания могут помочь в реальном мире. Осталось провести анализ того, сколько энергии потребляют различные компоненты компьютера.

Как разобраться, что требуется от питания

Существует огромное количество он-лайн - калькуляторов для расчёта потребления электроэнергии, однако все они имеют один недостаток: для расчётов там используются максимальные показатели потребления. Принцип прост: на основании показателей работы при уровне нагрузки 55-60% делается проекция (весьма приблизительная) на другие режимы. Крупным недостатком является то, что так не учитывается потребление энергии в режиме простоя оборудования. Как мы уже писали выше, именно этот режим является важным для энергоэффективности.

Нижеследующая таблица может использоваться в качестве ориентира для того, чтобы определить, сколько энергии тратят различные компоненты системы при разных задачах. Зная конкретные цифры, можно математически подсчитать точное количество затрачиваемой энергии.


Компонент/описание Энергопотребление в режиме бездействия, Вт Энергопотребление под нагрузкой, Вт Количество
Современный двуядерный процессор 20 65 1
Современный двуядерный процессор (разгон) 25 90 1
Современный четырёхъядерный процессор (средний уровень) 35 95 1
Современный четырёхъядерный процессор (High-End) 40 125 1
Современный четырёхъядерный процессор (High-End + разгон) 45 140 1
Старый двуядерный процессор (AMD) 35 90-125 1
Старый двуядерный процессор (Intel) 55 125-140 1
Старый одноядерный процессор 35 60-90 1
Современная материнская плата microATX без интегрированного GPU 15 25 1
Современная материнская плата microATX с интегрированным GPU 30 40 1
Обычная материнская плата среднего класса без интегрированного GPU 20 35 1
Обычная материнская плата среднего класса с интегрированным GPU 25 50 1
High-end материнская плата 35 45 1
High-End материнская плата + разгон 40 55 1
Современная память DDR2 или DDR3, на модуль 2 Гбайт 2 4 1-4
Современная память DDR2 или DDR3, на модуль 4 Гбайт 3 5 1-4
Разогнанная память, на модуль (предположение) 4 6 1-4
Обычный жёсткий диск 2 8-10 Разное
Твёрдотельный накопитель 1 4 Разное
Только DVD-ROM 1 6 1
Пишущий привод DVD 1 10 1
Пишущий/читающий привод Blu-Ray 2 12 1
Обычный кулер процессора, обязателен 1 1-3 1
Тихий вентилятор корпуса 2 2 Разное
Производительный вентилятор корпуса 3 3 Разное
Дискретная звуковая карта 2 8 0-1
ТВ-тюнер 1 2-5 0-1
Карта контроллера 1 2 Разное
Современная видеокарта для офисной работы 10 – 16 35 – 75 1
Современная видеокарта среднего уровня 16 – 30 75 – 180 1-2
Современная high-end видеокарта 25 – 35 180 – 375 1-2
Лампы с холодным катодом, комплектующие для моддинга и так далее См. информацию производителя См. информацию производителя Разное

Теперь, когда у нас есть представление о том, какую мощность затрачивают компоненты компьютера при разных вариантах загрузки, рассчитать уровень потребления энергии в режиме простоя и в рабочем режиме очень просто. Исходя из этой информации, в следующей главе мы сделаем обзор блоков питания и выберем оптимальные варианты для разных задач.

Диапазон потребляемой мощности

Рассмотрим показатели питания для трёх базовых сценариев. Сегодня доступно достаточно много методов, позволяющих снизить потребление энергии системой в режиме бездействия. Особенно это касается высокопроизводительных систем. Для них также, как правило, доступен более широкий диапазон настроек, включающий больше уровней энергопотребления. Грубо говоря, высокопроизводительные станции тратят мало энергии на холостом ходу, но при этом очень требовательны при полной загрузке.

В качестве примеров к следующей части нашей статьи мы возьмём показатели работы четырёх различных блоков питания. Это стандартный недорогой блок питания (фиолетовый), блок питания 80 PLUS (синий), модель 80 PLUS Bronze (оранжевый) и модель 80 PLUS Gold (жёлтый).

Кроме того, мы используем модель на 750 Вт, чтобы получить результаты по категории "супер-дешёвое питание". Итак, давайте посмотрим на результаты: они могут вас неприятно удивить.



Как видно, сама по себе покупка блока питания на 500 Вт ещё не решает всех проблем. Для оптимального выбора нужно учесть ещё по крайней мере два фактора: это качество и эффективность.

Пример 1: Офисный ПК

Давайте посмотрим на работу обычного компьютера, какие часто используются в офисах.

Офисный ПК
Процессор Intel Core 2 Duo E8400
Материнская плата Abit I-N73H
Память 2 x 2 Гбайт DDR2 Kingston Value RAM
Видеокарта Интегрированная
HDD 1 x 500 Гбайт Western Digital Caviar Blue
Оптический привод Пишущий DVD
Внешние потребители энергии Мышь, клавиатура
53 Вт
Среднее энергопотребление 90 Вт
Пиковое энергопотребление 122 Вт

Наша задача - найти для этой системы подходящий источник питания. Здесь мы должны извиниться перед нашими читателями: поскольку основой для этой статьи послужило исследование, проведенное нашими коллегами из Штудгарта, Германия, некоторые образцы оборудования могут быть вам недоступны, в зависимости от месторасположения. Однако, суть от этого не изменится, и в любом случае у вас, скорее всего, есть доступ к аналогичным устройствам.

Кроме того, нам не удалось использовать для тестирования устройство Jumper от Huntkey на 300 Вт (80 PLUS Gold) в качестве стандартного, поскольку образец, который мы ждали в лаборатории, застрял где-то между Китаем и Германией. Поэтому мы используем в качестве эталона не его, а Super Flower 450 Вт Golden Green, несмотря на его излишнюю мощность. Таким образом, наши кандидаты выглядят следующим образом.

Производитель Модель Сертификат Цена
Hardwaremania24 Нет € 9,90
LC-POWER LC6350 Super Silent 350 Вт Нет € 19,90
Be Quiet Pure PowerL7 300 Вт 80 PLUS € 32,00
Rasurbo Real & Power RAP 350 Вт 80 PLUS € 35,00
Super Flower Golden Green 450 W 80 PLUS Gold € 59,00

Результаты тестов

Итак, посмотрим, какие результаты демонстрируют устройства, которые мы взяли для тестов. Налицо явный разброс:



Разница мощности питания колеблется от 19 Вт в режиме ожидания до 11 Вт в режиме средней нагрузки (лидируют Rasurbo и Be Quiet), ну а при полной нагрузке она составит 14 Вт (здесь лучше показатели демонстрирует Super Flower). Что касается блоков питания от Hardwaremania24, то, если смотреть на показатели их работы, создаётся ощущение, что перед вами те же самые блоки питания на 250 Вт. Если вы хотите использовать их для передачи 300 Вт мощности системе, лучше предварительно обзавестись огнетушителем.

Заключение

Во всех трёх сценариях устройства, сертифицированные 80 PLUS, демонстрируют лучшие результаты. Отмеченный Gold-сертификатом Super Flower не входит в топ лидеров только по показателям полной загрузки. В целом нужно сказать, что разброс по производительности не так велик, как разброс по ценам. В целом можно сказать, что для офисного ПК лучше всего подходит блок питания небольшой мощности, сертифицированный 80 PLUS.

Что касается модели Super Flower на 450 Вт, то она, несмотря на свою сертификацию, не даёт каких-то дополнительных преимуществ, кроме показателя пикового энергопотребления. Нужно заметить, что на тестировании у нас находилась бесшумная система без вентилятора. Так что, если вы используете бесшумную систему, то выбор более дорогого блока питания будет оправдан.

Пример 2: Игровой ПК среднего уровня

И, снова, давайте посмотрим на характеристики тестируемой системы.

Игровой ПК среднего уровня
Процессор AMD Athlon X4 640
Материнская плата MSI 870A-G45
Память 4 x 2 Гбайт DDR3 Kingston HyperX
Видеокарта HIS Radeon HD 6870
Жёсткий диск
Оптический привод Пишущий DVD
Внешние потребители энергии Мышь, клавиатура, жёсткий диск USB
Энергопотребление в режиме бездействия 78 Вт
Среднее энергопотребление 126 Вт
Пиковое энергопотребление 332 Вт

А вот блоки питания, которые мы выбрали для тестирования:

Производитель Модель Сертификат Цена
Hardwaremania24 Стандартный блок питания ATX 420 Вт Нет € 9,90
LC-POWER LC6350 Super Silent 350 Вт Нет € 19,90
Rasurbo Real & Power RAP 350 W 80 PLUS € 35,00
Super Flower Golden Green 450 Вт 80 PLUS Gold € 59,00
Enermax Modu 82+ II ErP 425 Вт 80 PLUS Bronze € 80,00

Результаты тестов

Давайте снова посмотрим на наши графики. Помните, что мы говорили о том, что реальные характеристики устройств не всегда соответствуют заявленным? Так вот, два устройства сошли с дистанции в процессе тестирования. Смотрите сами:



Заключение

Rusturbo лидирует только по показателям в режиме простоя. В нормальном режиме вперёд вырывается Super Flower, хотя он и не сильно обгоняет конкурентов. Enermax на третьем месте, несмотря на свою высокую стоимость. LC-Power и Hardwaremania24 отстают, что соответствует их ценовой категории.

При полной загрузке в лидерах, наконец, оказывается Rasturbo. На втором месте, оставляя позади Super Flower, вырывается Enermax. В то же время, он работал громче, чем Super Flower, да и по стоимости он выше. Что до Rasturbo, то в этом тестировании он работал на своём пределе, о чём свидетельствовала громкая работа кулера; так что мы не рекомендуем его для долговременного использования, если, конечно, вы не используете энергосберегающую видеокарту вроде Radeon HD 6850.

При тестировании двух оставшихся блоков питания мы использовали переходники на PCIe. LC-Power на 350 Вт не справился с нагрузкой мощности в 235 Вт и сгорел. Мы не стали продолжать тесты при большой нагрузке и с моделью от Hardwaremania24, так как от него пошел характерный запах, когда мы запустили Google Earth в нашем "нормальном" сценарии. Как бы то ни было, мы посчитали, что риск такого рода не оправдан.

Пример 3: компьютер для энтузиаста

Теперь давайте посмотрим на параметры нашей конфигурации высокого класса.

Компьютер для энтузиастов
Процессор Intel Core i5 2500K@4,5 ГГц
Материнская плата Gigabyte P67A UD5
Память 2 x 4 Гбайт DDR3 Kingston HyperX
Видеокарта Gainward GTX 580
Жёсткий диск 1 x 1 Тбайт Western Digital Caviar Blue
Оптический привод Пишущий привод DVD
Внешние потребители энергии Мышь, клавиатура, жёсткие диски USB
Энергопотребление в режиме бездействия 72 Вт
Среднее энергопотребление 148 Вт
Пиковое энергопотребление 488 Вт

Для этой конфигурации у нас следующие кандидаты:

Производитель Модель Сертификат Цена
Super Flower Golden Green 450 Вт 80 PLUS Gold € 59,00
Raptoxx RT 600 SPL Нет € 62,00
Aerocool VT12XT 600 Вт 80 PLUS Bronze € 82,00
Enermax Modu 82+ II ErP 525 Вт 80 PLUS Bronze € 102,00
Corsair AX 750 80 PLUS Gold 80 PLUS Gold € 140,00

Мощной системе - мощное питание

В этой, последней, серии тестов выжили все наши блоки питания. Мы специально сделали широкий ценовой разброс и разницу в характеристиках устройств. Итак, вот результаты тестирования:



Заключение

И снова мы использовали тестируемые устройства на максимальных значениях, а иногда - и при превышении их. Super Flower, номинальная мощность которого составляет 450 Вт, работал так, что можно было сделать вывод, что перед нами блок питания на 500 Вт. Он продолжал нормально работать даже при максимальной нагрузке.

Показатели работы в режиме простоя мощного блока Corsair AX 750 немного уступают конкурентам. Однако, с увеличением общей нагрузки, относительная энергоэффективность этой модели также возрастает. Что касается модели Enermax Modu 82+ ErP на 525 Вт, то она не показала каких-то серьёзных преимуществ или недостатков, это твёрдый середнячок. В принципе, то же можно сказать и про блок питания от Corsair, у которого, кстати, есть такое преимущество, как низкий уровень шума. Правда, стоит он недёшево.

Raptoxx, с другой стороны, сочетает невысокую стоимость и приличные показатели. Его основной недостаток - это шум. И если вы готовы мириться с этим, то он оправдает себя: в плане экономичности это лучший вариант, его издержки составляют всего каких-то 15-20 Вт. Aerocool VT12XT на 600 Вт обойдётся дороже, однако он не такой шумный. Эксплуатация этого устройства в долгосрочной перспективе приведёт к дополнительным тратам.

Надеемся, что вы последуете нашим советам, и вам не понадобится огнетушитель

Итак, что мы узнали нового?

Подводя итоги нашего небольшого исследования, мы составили небольшой список советов по выбору оборудования питания.

  1. Выбор блока питания с разумным уровнем мощности, в большинстве случаев, более оправдан, чем траты на более мощное устройство;
  2. Покупать устройство высокой мощности имеет смысл разве что в том случае, если вы твёрдо рассчитываете использовать его в полную силу в будущем;
  3. Блоки питания среднего ценового диапазона, сертифицированные 80 PLUS Gold, будут хорошей покупкой, если вы работаете с большим разбросом рабочей мощности;
  4. Проверяйте соответствие спецификаций на упаковке и реальных значений: количество ватт не всегда совпадает;
  5. И не покупайте самые дешёвые блоки питания: приемлемые варианты стоят не дешевле 50 долларов.

И не говорите, что мы вас не предупредили!

Надеемся, что это изображение будет достаточным предупреждением о возможной опасности. Также надеемся, что наша статья помогла составить представление о работе источников питания. Этот компонент системы, которому, как правило, уделяют меньше внимания, чем, скажем, процессорам или материнским платам, является всё же важной частью. Пренебрегать им не стоит: грамотный выбор блока питания поможет сэкономить деньги, обеспечить стабильную работу и безопасность.

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами .

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.


После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.


Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых не надежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.

Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.

Поиск неисправности БП внешним осмотром

Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.

Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления» .

Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром . Если предохранитель перегорел, то его нужно заменить новым или отремонтировать . Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.

Как проверить исправность БП замыканием контактов PG и GND

Если материнскую плату можно проверить только подключив ее к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.

От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.

Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.

Если разъем имеет 20 контактов 14 (провод зеленого цвета, в некоторых блоках питания может быть серый , POWER ON) и вывод 15 (провод черного цвета, GND).

Если разъем имеет 24 контакта , то соединять между собой нужно вывод 16 (зеленого зеленого , в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).

Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.

Проверка БП компьютера
измерением напряжений и уровня пульсаций

После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размахов пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.

Можно обойтись и без блока нагрузок измеряв напряжение и уровннь пульсаций непосредственно на выводах разъемов БП в работающем компьютере.

Таблица выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цвет провода оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.

Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.

Как заменить предохранитель в БП компьютера

Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.

Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.

При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.

Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.

Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.

Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.

Поиск в БП неисправных электролитических конденсаторов

Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.

На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.

При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большей запас и такая замена не ухудшит работу блока питания и компьютера в целом.


Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.

Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».

Проверка дросселя групповой стабилизации БП АТХ

Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.


На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.

Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.

Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.

Проверка других элементов БП

Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.